We present an end-to-end framework to learn partial differential equations that brings together initial data production, selection of boundary conditions, and the use of physics-informed neural operators to solve partial differential equations that are ubiquitous in the study and modeling of physics phenomena. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our physics-informed neural operators to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled partial differential equations. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the source code, an interactive website to visualize the predictions of our physics informed neural operators, and a tutorial for their use at the Data and Learning Hub for Science.
translated by 谷歌翻译
In this paper, we increase the availability and integration of devices in the learning process to enhance the convergence of federated learning (FL) models. To address the issue of having all the data in one location, federated learning, which maintains the ability to learn over decentralized data sets, combines privacy and technology. Until the model converges, the server combines the updated weights obtained from each dataset over a number of rounds. The majority of the literature suggested client selection techniques to accelerate convergence and boost accuracy. However, none of the existing proposals have focused on the flexibility to deploy and select clients as needed, wherever and whenever that may be. Due to the extremely dynamic surroundings, some devices are actually not available to serve as clients in FL, which affects the availability of data for learning and the applicability of the existing solution for client selection. In this paper, we address the aforementioned limitations by introducing an On-Demand-FL, a client deployment approach for FL, offering more volume and heterogeneity of data in the learning process. We make use of the containerization technology such as Docker to build efficient environments using IoT and mobile devices serving as volunteers. Furthermore, Kubernetes is used for orchestration. The Genetic algorithm (GA) is used to solve the multi-objective optimization problem due to its evolutionary strategy. The performed experiments using the Mobile Data Challenge (MDC) dataset and the Localfed framework illustrate the relevance of the proposed approach and the efficiency of the on-the-fly deployment of clients whenever and wherever needed with less discarded rounds and more available data.
translated by 谷歌翻译
Image noise can often be accurately fitted to a Poisson-Gaussian distribution. However, estimating the distribution parameters from a noisy image only is a challenging task. Here, we study the case when paired noisy and noise-free samples are accessible. No method is currently available to exploit the noise-free information, which may help to achieve more accurate estimations. To fill this gap, we derive a novel, cumulant-based, approach for Poisson-Gaussian noise modeling from paired image samples. We show its improved performance over different baselines, with special emphasis on MSE, effect of outliers, image dependence, and bias. We additionally derive the log-likelihood function for further insights and discuss real-world applicability.
translated by 谷歌翻译
尽管近年来取得了显着的进展,但开发了几个局限性的单像超分辨率方法。具体而言,它们在具有某些降解(合成还是真实)的固定内容域中进行了培训。他们所学的先验容易过度适应培训配置。因此,目前尚不清楚对新型领域(例如无人机顶视图数据以及跨海)的概括。尽管如此,将无人机与正确的图像超分辨率配对具有巨大的价值。这将使无人机能够飞行更高的覆盖范围,同时保持高图像质量。为了回答这些问题,并为无人机图像超级分辨率铺平了道路,我们探索了该应用程序,特别关注单像案例。我们提出了一个新颖的无人机图像数据集,其场景在低分辨率和高分辨率下捕获,并在高度范围内捕获。我们的结果表明,现成的最先进的网络见证了这个不同领域的性能下降。我们还表明了简单的微调,并将高度意识纳入网络的体系结构,都可以改善重建性能。
translated by 谷歌翻译
深度图像置位者实现最先进的结果,但具有隐藏的成本。如最近的文献所见,这些深度网络能够过度接受其训练分布,导致将幻觉不准确地添加到输出并概括到不同的数据。为了更好地控制和解释性,我们提出了一种新颖的框架,利用了去噪网络。我们称之为可控的基于席位的图像去噪(CCID)。在此框架中,我们利用深度去噪网络的输出与通过可靠的过滤器卷积的图像一起。这样的过滤器可以是一个简单的卷积核,其不会增加添加幻觉信息。我们建议使用频域方法熔断两个组件,该方法考虑了深网络输出的可靠性。通过我们的框架,用户可以控制频域中两个组件的融合。我们还提供了一个用户友好的地图估算,空间上的置信度可能包含网络幻觉。结果表明,我们的CCID不仅提供了更多的可解释性和控制,而且甚至可以优于深脱离机构的定量性能和可靠的过滤器的定量性能,尤其是当测试数据从训练数据发散时。
translated by 谷歌翻译
过去几十年来看,越来越多地采用的非侵入性神经影像学技术越来越大的进步,以检查人脑发展。然而,这些改进并不一定是更复杂的数据分析措施,能够解释功能性大脑发育的机制。例如,从单变量(大脑中的单个区域)转变为多变量(大脑中的多个区域)分析范式具有重要意义,因为它允许调查不同脑区之间的相互作用。然而,尽管对发育大脑区域之间的相互作用进行了多变量分析,但应用了人工智能(AI)技术,使分析不可解释。本文的目的是了解电流最先进的AI技术可以通知功能性大脑发展的程度。此外,还审查了哪种AI技术基于由发育认知神经科学(DCN)框架所定义的大脑发展的过程来解释他们的学习。这项工作还提出说明可解释的AI(Xai)可以提供可行的方法来调查功能性大脑发育,如DCN框架的假设。
translated by 谷歌翻译
基于全面的生物识别是一个广泛的研究区域。然而,仅使用部分可见的面,例如在遮盖的人的情况下,是一个具有挑战性的任务。在这项工作中使用深卷积神经网络(CNN)来提取来自遮盖者面部图像的特征。我们发现,第六和第七完全连接的层,FC6和FC7分别在VGG19网络的结构中提供了鲁棒特征,其中这两层包含4096个功能。这项工作的主要目标是测试基于深度学习的自动化计算机系统的能力,不仅要识别人,还要对眼睛微笑等性别,年龄和面部表达的认可。我们的实验结果表明,我们为所有任务获得了高精度。最佳记录的准确度值高达99.95%,用于识别人员,99.9%,年龄识别的99.9%,面部表情(眼睛微笑)认可为80.9%。
translated by 谷歌翻译
经典图像恢复算法使用各种前瞻性,无论是明确的还是明确的。他们的前沿是手工设计的,它们的相应权重是启发式分配的。因此,深度学习方法通​​常会产生优异的图像恢复质量。然而,深度网络是能够诱导强烈且难以预测的幻觉。在学习图像时,网络隐含地学会联合忠于观察到的数据;然后是不可能的原始数据和下游的幻觉数据的分离。这限制了它们在图像恢复中的广泛采用。此外,通常是降解模型过度装备的受害者的幻觉部分。我们提出了一种具有解耦的网络先前的幻觉和数据保真度的方法。我们将我们的框架称为贝叶斯队的生成先前(BigPrior)的集成。我们的方法植根于贝叶斯框架中,并将其紧密连接到经典恢复方法。实际上,它可以被视为大型经典恢复算法的概括。我们使用网络反转来从生成网络中提取图像先前信息。我们表明,在图像着色,染色和去噪,我们的框架始终如一地提高了反演结果。我们的方法虽然部分依赖于生成网络反演的质量,具有竞争性的监督和任务特定的恢复方法。它还提供了一种额外的公制,其阐述了每像素的先前依赖程度相对于数据保真度。
translated by 谷歌翻译
Recent work has shown the benefits of synthetic data for use in computer vision, with applications ranging from autonomous driving to face landmark detection and reconstruction. There are a number of benefits of using synthetic data from privacy preservation and bias elimination to quality and feasibility of annotation. Generating human-centered synthetic data is a particular challenge in terms of realism and domain-gap, though recent work has shown that effective machine learning models can be trained using synthetic face data alone. We show that this can be extended to include the full body by building on the pipeline of Wood et al. to generate synthetic images of humans in their entirety, with ground-truth annotations for computer vision applications. In this report we describe how we construct a parametric model of the face and body, including articulated hands; our rendering pipeline to generate realistic images of humans based on this body model; an approach for training DNNs to regress a dense set of landmarks covering the entire body; and a method for fitting our body model to dense landmarks predicted from multiple views.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译